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Supersensitivity in a chain of closely spaced electric dipoles with variable moments
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Institute of Applied Mechanics, Ural Division, Russian Academy of Sciences, Izhevsk 426000, Russia
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A chain of closely spaced oscillators is studied theoretically. The oscillators are interrelated electric dipoles
whose moments may vary within a wide range. An expression for the oscillator interaction potential is sug-
gested. On the basis of this potential, a one-dimensional nonlinear equation of motion is derived with allow-
ance made for dissipation and external driving. A numerical investigation is carried out, and various nonlinear
phenomena are revealed in the chain. Among them are the size effect and ultrasensitivity, i.e., a giant response
of the chain to extremely weak periodic perturbations. The findings are compared with previously obtained
experimental results on naturally occurring objects with similar structure. It is inferred that the model is
realistic.
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I. INTRODUCTION

This paper deals with a system of closely spaced osci
ing electric dipoles with variable and interrelated dipole m
ments in the presence of dissipation and perturbation. It
challenging problem to ascertain the behavior of the sys
even in a one-dimensional case. In practical terms,
model may provide valuable insight into remarkable ph
nomena in some types of heterogeneous condensed m
that has been exposed to an electromagnetic field of an
tralow frequency~ULF! below 103 Hz. The medium consists
of a nonconducting or semiconducting continuous phase
inclusions with liquid or quasiliquid conducting sheath
Such structures are usually formed in almost any insula
during a phase transition. They permanently exist in powd
and water-saturated rock. They are also basically simila
certain systems of cells in organisms. A realistic model
such media should take into account the close spacing o
oscillators and the variation in their dipole moments. Oth
wise, many interesting phenomena may be overlooked.

Among the phenomena is the ultrasensitivity of cryst
line hydrates to ULF under strong compression. This
cently detected effect manifests itself in the giant mechan
response to an extremely weak electric field in a very nar
ULF range where the field strength is lower than the elec
breakdown threshold by a factor of about;103 @1#. Further-
more, the frequency range shifts if the medium is heated@2#.
The effect is preceded by giant bursts of dielectric susce
bility at ULFs, which apparently result from the formation
short-lived heterogeneous structures, including noncond
ing microinclusions with thin liquid sheaths containing m
bile ions. Susceptibility bursts in such media experienc
ULF fields have been reported by many researchers~see the
references in@3#!. The phenomenon stems mainly from th
accumulation of extremely large amounts of polarizat
charges~free anions or cations! at the poles of the microin
clusions so that the dipole moments of the oscillators cha
considerably. However, in contrast to dielectric-loss spec
the reported shapes of ULF permittivity have no narrow
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wide peaks at any moment of growth. They are smo
curves obeying the Debye-spectrum dispersion relation.
point is that dipole-dipole interaction in the chain has be
neglected when dealing with inhomogeneous media in U
fields because of computational difficulties. Accordingly,
tempts to relate the giant susceptibility bursts at ULFs to
giant mechanical response resulted in rather academic m
els of gas breakdown in microcracks of crystalline-hydr
plates under compression. The models imply that a U
peak may arise in input-power spectral density, which le
to a singularity in the ultrasensitivity spectrum@3#. The peak
would be noticeable if the charge relaxation timet of the
sheaths was about;1022 s and the particle size was in th
micrometer range. In reality,t51/V;1025 s, whereV;5
3104 Hz is the frequency corresponding to the maximum
dielectric loss. Furthermore, the models state that a U
peak arises only if each physical property of the gas in
crocracks is within a very narrow range. The above cons
erations have led us to the conclusion that a chain of clos
spaced oscillating dipoles with variable moments should
used as a physical model of ultrasensitivity. In particular, t
approach could help one understand why the phenomeno
confined to a narrow ULF range, at least at the onset
excitation.

To explain the above phenomena, a one-dimensio
chain of closely spaced oscillating electric dipoles is cons
ered, witha and 2r standing for the average dipole spacin
and the charge spacing of a dipole, respectively~Fig. 1!.
Based on this model, the total potential of the interact
between the oscillators should be determined and the sys
behavior under the action of an ULF electric field should
investigated. Recall that well-known models based on os
lator chains with nonlinear coupling typically imply that th
dipole moments are constant anda@2r @4–7#. Although this
approach works well with certain quasi-one-dimensio
chains, it fails when applied to various systems where dip
charges vary by one to four orders of magnitude, depend
on the oscillator spacing, oscillator natural frequencies,
Accordingly, this study follows the course outlined in th
section. Also, we compare the computed behavior of
chain with experimental data.

The structure of this paper is the following. In Sec. II, thu
©2002 The American Physical Society03-1
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FIG. 1. Configuration of the dipole-oscillato
chain (n51,2,...,N) with spacinga. Each oscilla-
tor represents a particle of diameter 2r with a
sheath containing oscillating charges. The she
thickness may be;30–300Å.
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model describing the interaction between closely spaced
poles in a chain with strongly variable moments is give
Solving the Euler-Lagrange equation with the help of t
corresponding potential of interaction, we find the nonline
equation of motion in this system. In Sec III, the actual ord
of certain coefficients for this equation is evaluated. In S
IV, the results of the numerical computations are given. T
existence of the dependence of the value of the maxi
level of polarization in the dipole chain with variable m
ments on the quantity of dipoles in the chain is demonstra
It is shown that this size effect results in the possibility
supersensitivity in these chains or strong polarization at le
in one dipole oscillator in the chain when the entire chain
excited by ultra-weak electromagnetic signals at ultralow f
quencies. In Sec. V, the results of the computations are
cussed. In the final part, the conclusions are given.

II. MODEL DESCRIPTION

The model is illustrated in Fig. 1. The potential ener
will be calculated for the case ofa@2r , where a is the
average oscillator spacing andr is the oscillator radius with
variable dipole moments. Thus, neighboring oscillators m
be in contact. Furthermore, we assume that the polariza
level may be very sensitive to both the frequencies and
strengths of local and external fields. Dipole-dipole inter
tion will be treated in the Coulomb approximation. For t
respective oscillators, letwn21 , wn , and wn11 denote the
deflection angles of the dipole axes from the unstab
equilibrium positions~Fig. 1!. Then, the potential energy o
the oscillator system has the general form

U int5
1

4p««o
(

n
H S Qn21

1 Qn
1Rn21,n

11

~Rn21,n
11 !2 1

Qn21
2 Qn

2Rn21,n
22

~Rn21,n
22 !2

2
Qn21

2 Qn
1Rn21,n

21

~Rn21,n
21 !2 2

Qn21
1 Qn

2Rn21,n
12

~Rn21,n
12 !2 D

1S Qn
1Qn11

1 Rn,n11
11

~Rn,n11
11 !2 1

Qn
2Qn11

2 Rn,n11
22

~Rn,n11
22 !2

2
Qn

2Qn11
1 Rn,n11

21

~Rn,n11
21 !2 2

Qn
1Qn11

2 Rn,n11
12

~Rn,n11
12 !2 D J . ~1!

Here, the distances between the charges of the (n21)th di-
pole and those of thenth dipole are expressed as
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Rn21,n
11 5@$a2r ~sinwn212sinwn!%2

1r 2~coswn212coswn!2#1/2

5H a214r sinS wn2wn21

2 D F r sinS wn2wn21

2 D
1a cosS wn1wn21

2 D G J 1/2

, ~2!

Rn21,n
22 5$@a1r ~sinwn212sinwn!#2

1r 2~coswn212coswn!2%1/2

5H a214r sinS wn2wn21

2 D F r sinS wn2wn21

2 D
2a cosS wn1wn21

2 D G J 1/2

, ~3!

Rn21,n
21 5$@a1r ~sinwn211sinwn!#2

1r 2~coswn211coswn!2%1/2

5H a214r cosS wn2wn21

2 D F r cosS wn2wn21

2 D
1a sinS wn1wn21

2 D G J 1/2

, ~4!

Rn21,n
12 5$@a2r ~sinwn211sinwn!#2

1r 2~coswn211coswn!2%1/2

5H a214r cosS wn2wn21

2 D F r cosS wn2wn21

2 D
2a sinS wn1wn21

2 D G J 1/2

. ~5!

In Eq. ~1! Rn21,n
11 , Rn21,n

22 , Rn21,n
21 , Rn21,n

12 , Rn,n11
11 ,

Rn,n11
22 , Rn,n11

21 , Rn,n11
12 , denote the radius vectors betwee

the respective charges in the chain. The respective dista
Rn,n11

11 , Rn,n11
22 , Rn,n11

21 , and Rn,n11
12 between the charge

Qn11
1 , Qn11

2 , Qn
1 , and Qn

2 in dipoles n11 and n obey
formulas that can be derived from Eqs.~2!–~5! by replacing
n with n11 andn21 with n. Finally, « is the relative per-
mittivity of the medium and«o is the permittivity of free
space. It is convenient to recast Eq.~1! as
3-2
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U int5
1

4p««o
(

n
H Qn

1S Qn
1Rn21,n

11

~Rn21,n
11 !2 2

Qn
1Rn,n11

11

~Rn,n11
11 !2 D

1Qn
2S Qn21

2 Rn21,n
22

~Rn21,n
22 !2 2

Qn11
2 Rn,n11

22

~Rn,n11
22 !2 D

1Qn
1S Qn11

2 Rn,n11
21

~Rn,n11
21 !2 2

Qn21
2 Rn21,n

21

~Rn21,n
21 !2 D

1Qn
2S Qn11

1 Rn,n11
12

~Rn,n11
12 !2 2

Qn21
1 Rn,n11

12

~Rn,n11
12 !2 D J . ~6!

Now, let us take into account that the charge of dipolen
depends on external and local electric fields, the latter be
produced by the moving charges of dipolesn21 andn11.
Assume that the other dipoles act on dipolen only indirectly
via the chain as a result of shielding. We neglect other ph
cal and chemical processes in the oscillators and aro
them that may affect polarization~for details, see@9–11#!.
The contribution of external and local fields to the polariz
tion of any of the chargesQn

1 , Qn
2 , Qn21

1 , and Qn21
2 is

assumed to obey the superposition principle, allowing for
frequency dependence. For any oscillator, the frequencie
the positive and the negative charges are considered to b
same. For each oscillator, let the dependence of the pola
tion on the frequencies of the local and the external fieldvn
and V, respectively, obey the Debye dispersion law@9,10#.
Since (uQn

1u5uQn
2u), the respective dipole charges of th

(n21)th, nth, and (n11)th oscillators are expressed as

Qn
15bH coe~«s2«`!Rn,n21

11

4p««o@11~tvn21!2#~Rn,n21
11 !3

1
coe~«s2«`!Rn,n11

11

4p««o@11~tvn11!2#~Rn,n11
11 !3

2
coe~«s2«`!Rn,n21

21

4p««o@11~tvn21!2#~Rn,n21
21 !3

2
coe~«s2«`!Rn,n11

12

4p««o@11~tvn11!2#~Rn,n11
12 !3 1

En
ext

11~tV!2J ,

~7!

Qn21
1 5bH coe~«s2«`!Rn21,n22

11

4p««o@11~tvn22!2#~Rn21,n22
11 !3

1
coe~«s2«`!Rn21,n

11

4p««o@11~tvn!2#~Rn21,n
11 !3

2
coe~«s2«`!Rn21,n22

21

4p««o@11~tvn22!2#~Rn21,n22
21 !3

2
coe~«s2«`!Rn21,n

12

4p««o@11~tvn!2#~Rn21,n
12 !3 1

En21
ext

11~tV!2J ,

~8!
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Qn11
1 5bH coe~«s2«`!Rn11,n

11

4p««o@11~tvn!2#~Rn11,n
11 !3

1
coe~«s2«`!Rn11,n12

11

4p««o@11~tvn12!2#~Rn11,n12
11 !3

2
coe~«s2«`!Rn11,n

21

4p««o@11~tvn!2#~Rn11,n
21 !3

3
coe~«s2«`!Rn11,n12

12

4p««o@11~tvn12!2#~Rn11,n12
12 !3 1

En11
ext

11~tV!2J ,

~9!

wheret is the relaxation time of bound charges in shea
and«s and«` are the maximum static low frequency~SLF!
and the minimum high-frequency~optical! values of the per-
mittivity, respectively.

The coefficientco is the number of elementary dipol
chargese that change the permittivity of the system by uni
during polarization. Let the chain be subjected to a unifo
harmonic external field directed along the chain axis. In
vicinity of an nth oscillator, the field is expressed as

En
ext52«21E sin~2pVt !cos~wn!. ~10!

Similar expressions describe the field near oscillatorsn
21 andn11. To evaluateEn , En21 , andEn11 we assume
that the charge of dipolen or n21 tends toQ`5coe«` for
vn→` and toQo5co(«s2«`) for vn→0. Also, we assume
thatco5const for each oscillator in the chain. The coefficie
b corresponds to the dipole charge that is induced in a fi
of unit strength. In other words,b specifies the polarization
susceptibility of an oscillator. It is similar to dielectric su
ceptibility, which represents the relationship between the
larization and the field strength in a macroscopic dielec
body. To a first approximation, we regardb as a constant
here. In reality, it may depend on many other parameters

Let us assume that the variableswn are nearly identical
for neighboring dipoles at the same point in time. Accor
ingly, if we perform the changena→x and wn(t)→w(x,t)
in the continuum approximationwn2wn21;d, thenU int can
be expanded in terms of a small parameter as

wn2wn21.wn112wn;a
]w

]x
. ~11!

In view of Eqs.~1!–~11! and the accompanying comment
we obtain an expression forU int by passing to the limit for
a→2r 1D in the expansion to second-order terms. In t
continuum approximation, it can be written as
3-3
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U int5
1

4p««o
E ]x

a
b2V1~x,t !V2~x,t !3H 2@P~ t !cos~w!

1B~x,t !V3~x,t !#2B~x,t !@P~ t !cos~w!V4~x,t !

1V3~x,t !V5~x,t !#
]w

]x
2B~x,t !@5P~ t !cos~w!$V6~x,t !

1V7~x,t !%19V3~x,t !V7~x,t !#J , ~12!

with

P~ t !5
2E sin~2pVt !

«@11~tV!2#
. ~13!

S1~x,t !5a214r 224ra sin~w!, ~14!

S2~x,t !5a214r 214ra sin~w!, ~15!

B~x,t !5
coe~«s2«`!

4p««o@11~tw t!
2#

, ~16!

V1~x,t !5P~ t !cos~w!1B~x,t !@S1
21~x,t !2S2

21~x,t !#,
~17!

V2~x,t !5S1
21/2~x,t !1S2

21/2~x,t !, ~18!

V3~x,t !5S1
21~x,t !1S2

21~x,t !, ~19!

V4~x,t !54ra2 cos~w!@S1
22~x,t !1S2

22~x,t !#, ~20!

V5~x,t !52ra2 cos~w!B~x,t !S1
21~x,t !, ~21!

V6~x,t !52ra3 sin~w!S2
22~x,t !14r 2a4 cos2~w!S2

23~x,t !,
~22!

V7~x,t !522ra3 sin~w!S1
22~x,t !14r 2a4 cos2~w!S1

23~x,t !.
~23!

When deriving Eq.~12!, formula~6! was used, because i
the limit of a→2r 1D, the first two summands in parenth
ses become negligible compared to the remainder. For
same reason, each of the formulas~7!–~9! was used without
the first two summands that account for the interaction
tween like charges of neighboring dipoles. Obviously, t
simplification is justified by the existence of potential we
at wn5p/21np, which become deeper as opposite char
of neighboring dipoles grow owing to polarization.

Let cn denote the number of uncompensated charged
ticles ~such as cations or anions! in the sheath of annth
oscillator so that the total mass of the charged particles a
ends of thenth dipole is Mn5cnm, each particle having
massm. Then the kinetic energy of the chain is given by

Tk5
1

2 (
n

JnS ]wn

]t D 2

. ~24!

Here,Jn5cnmr2 is the moment of inertia. Furthermore,
view of Eq. ~7!
02140
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In the continuum approximation, expansion to the seco
order terms yields

Tk5b
mr2

e E dx

a H V1~x,t !1B~x,t !V8~x,t !
]w

]x

1B~x,t !V9~x,t !
]2w

]x2 J S ]w

]t D 2

, ~26!

with

V8~x,t !56ra2 cos~w!S1
22~x,t !, ~27!

V9~x,t !525ra3 sin~w!S1
22~x,t !

136r 2a4 cos2~w!S1
23~x,t !. ~28!

Now, we assume that the dissipative forces are lin
functions of charge angular velocities. Then, withjn denot-
ing the dissipation parameter, the dissipation has the for

D5
1

2 (
n

cnjnr 2S ]wn

]t D 2

. ~29!

The above reasoning for the kinetic energy, including f
mulas ~25! and ~7!, can be also applied to the dissipatio
function. In the continuum approximation, expansion to t
second-order terms yields

D5b
jr 2

e E dx

a H V1~x,t !1B~x,t !V8~x,t !
]w

]x

1B~x,t !V9~x,t !
]2w

]x2 J S ]w

]t D 2

. ~30!

The force with which the external field acts on the cha
can be expressed as

F52«21E sin~2pVt !(
n

Qn cos~wn!. ~31!

whereQn addictively depends on local and external field
according to Eq.~7!. Let us expandF into a series. By anal-
ogy with Eqs.~26! and ~30!, the continuum approximation
yields

F52«21E sin~2pVt !E dx

a
cos~w!H V1~x,t !

1B~x,t !V8~x,t !
]w

]x
1B~x,t !V9~x,t !

]2w

]x2 J . ~32!

It follows from expressions~11! and ~30! that the effec-
tive force applied to the chain is proportional to the squa
amplitude of the external ac field. Now, let us write th
Euler-Lagrange equation with regard for dissipation~30! and
perturbation
3-4
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]w

]t S ]L

]w t
D1

]w

]x S ]L

]wx
D2

]L

]w
52

]D

]w t
1F~x,t !. ~33!

Here, the Lagrangian

L5Tk2U int ~34!

involves formulas~26! and~12! for the potential and kinetic
energies, respectively. In the continuum approximation,
~33! can be transformed into the following nonlinear moti
equation written in natural units

W1

]2w

]t2 1W21X1

]2w

]x2 1X22G1 sin~w!2G21Dis
]w

]t
5F.

~35!

When deriving Eq.~35!, for each differentiation, we ne
glected the terms with 1/a raised to the minimum power
This simplification is based on the assumption thata!1 in
natural units. Introducing the notation

w t5
]w

]t
, wx5

]w

]x
, wxt5

]2w

]x]t
, wxx5

]2w

]x2 ,

we write expressions for the functions appearing in Eq.~35!
as

W1~x,t !52MV1~x,t !12V2~x,t !V11~x,t !

3FV1~x,t !V3~x,t !1V10~x,t !S ]w

]x D 2G , ~36!

W2~x,t !52M ]
]t V1~x,t ! ]w

]t 12b2V2~x,t ! ]
]t B~x,t !

3H V3~x,t ! ]
]t V1~x,t !1V1~x,t ! ]

]t V3~x,t !

1
]

]t
V10~x,t !S ]w

]x D 2

12V10~x,t !S ]w

]x D ]2w

]t]xJ ,

~37!

where

V10~x,t !55P~ t !cos~w!@V6~x,t !1V7~x,t !#

19V3~x,t !V7~x,t !, ~38!

V11~x,t !5
2Axt2

@11~tw t!
2#2 H 4~twt !2

11~tw t!
221J . ~39!

A5coe~«s2«`!, x5
1

4p««o
, M5

mr2

2e
. ~40!

Also, we have,

G1~x,t !5M sin21~w!@V13~x,t !148r 2a3MB~x,t !

3cos2~w!S1
23~x,t !wx#S ]w

]t D 2

112 sin~w!b2V1~x,t !V12~x,t !@P~ t !cos~w!

1B~x,t !V3~x,t !#, G2~x,t !50, ~41!
02140
.

where

V12~x,t !52ra cos~w!@S1
23/2~x,t !2S2

23/2~x,t !#, ~42!

V13~x,t !52P~ t !sin~w!14raAx

3cos~w!@S1
22~x,t !2S2

22~x,t !#. ~43!

In addition,

X1~x,t !52MB~x,t !V9~x,t !w t
212b2P~ t !V2~x,t !

3$5 cos~w!@V6~x,t !1V7~x,t !#

19V8~x,t !V7~x,t !%, ~44!

X2~x,t !5MB~x,t ! ]
]x V8~x,t !w t

212MB~x,t ! ]
]x V9~x,t !w t

2wx

1Ab2V2~x,t !$2V5~x,t ! ]
]x V3~x,t !

12V3~x,t ! ]
]x V5~x,t !2P~ t !sin~w!V4~x,t !wx%

118Ab2V2~x,t !$V7~x,t ! ]
]x V3~x,t !

1V3~x,t ! ]
]x V7~x,t !%wx . ~45!

Finally,

Dis~x,t !52bC$V1~x,t !1B~x,t !@V8~x,t !wx1V9~x,t !wx
2#

2B~x,t !~11t2w t
2!21V8~x,t !t2w t

2wx%, ~46!

with

C5
jr 2

2e
, ~47!

and

F~x,t !52«21Eb sin~2pVt !cos~w!@V1~x,t !

1B~x,t !V8~x,t !wx1B~x,t !V9~x,t !wx
2#. ~48!

It is convenient to recast Eq.~35! in a form similar to the
sine-Gordon~SG! equation

]2w

]t2 1vo
2 ]2w

]x2 2uo
2 sin~w!2h

]w

]t
5g~x,t !. ~49!

Here,

vo5AX1~x,t !/W1~x,t !, ~50!

is an analog of the maximum velocity at which a perturb
tion propagates into the chain. Also,

uo5AG1~x,t !/W1~x,t ! ~51!

is an analog of the plasma frequency. In Eq.~49!, the level of
dissipation is represented by

h5Dis~x,t !/W1~x,t !, ~52!
3-5
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and the perturbation, by

g~x,t !5@F~x,t !2W2~x,t !2X2~x,t !1G2~x,t !#/W1~x,t !.
~53!

With l denoting the length of the chain, we introduce t
boundary condition

w~0,t !5w~ l ,t !50. ~54!

Physically, condition~54! may correspond to an interphas
boundary, which is impermeable to the perturbations un
consideration.

III. ESTIMATIONS FOR THE COEFFICIENTS IN
EQUATION „49…

Let us find the values for the coefficients in Eq.~49! so
that the chain can simulate most closely the behavior of n
rally occurring objects, such as disperse systems or l
chains of living cells. To this end, let us estimate the num
of uncompensated elementary charges in the thin liq
sheaths which determine the spherical shape of each os
tor ~Fig. 1!. We assume that a particle of the majority carr
has a charge e;1.6310219C and a mass m;1.6
310227kg ~its effective mass may be much larger!. For ex-
ample, such a carrier may be an H1 ion, since its mobility is
much higher than that of OH2 or other anions and cations
Let r;1026– 1023 m and a;331026– 331023 m. The
sheath thicknessd may be set at about;1029– 1028 m @8#.
We assume that at leastx1;1% of water in the sheaths i
dissociated and thatx2;1% of the anions and cations con
stitute the uncompensated charges. Then the density o
ementary charges that may be involved in polarization
estimated at

c15x1x24p@~r 1d!32r 3#rH2O~3m!21

;1011– 1014 charge/mm3, ~55!

where r;103 kg/m3 is the water density andmH2O'3

310227 is the mass of a water molecule.
Thus, we see that the above estimate ofc1 agrees with the

well-known value of ;1011charge/mm3 @8#. Correspond-
ingly, Q15c1e is ;10212– 1029 C. Strictly speaking, the
parameters should depend on the thermodynamic and
properties of the medium.

We select the value ofc1 such that the uncompensate
chargeQ is no larger than 10212– 1029 C when the polariza-
tion is at its maximum. The relaxation time is defined ast1
5r 2/2D, where D is the volume diffusion coefficient o
charges in the sheaths. The relaxation time is evaluated f
the frequencyv51/t1 which corresponds to the highest d
electric loss. In the context of this study,v'6.29
3104 rad/s, so thatt'1.631025 s.

Finally, consider the case of a disperse system. For thenth
dipole, the fraction of its kinetic energy~apart from thermal
fluctuations! that is converted into heat is proportional to t
dielectric-loss tangenttgdn'vnt wherevnt is the natural
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frequency of the dipole@8#. Accordingly, all other things be-
ing the same, formulas~26! and ~30! imply that

1

2
vntmr2S ]w

]t D 2

'
1

2
j r r

2S ]w

]t D 2

. ~56!

Hence, we obtain the estimate

j;vtm;10233.

IV. RESULTS

As is known, the disturbed SG equation has been sol
analytically only in certain special cases@4,9#. Nevertheless,
we will demonstrate that motion Eq.~49!, which describes
the transmission of signals in disperse systems with dou
electrical layers, allows resonancelike excitation at ULFs
spite very stringent restrictions that were imposed on
equation. This section deals with the numerical analysis
Eq. ~49! with a constraint on the length of the chain~the
computational scheme is outlined in the Appendix!. The
analysis aims at ascertaining the nature of the excitation
to explore the possibilities for other effects.

As one would expect, the chain exhibits ULF ultrasen
tivity in a wide range of relaxation times:t1;1025– 100 s.
Figure 2 depicts the evolution of the polarization-level sp
trum when the chain is subjected to an extremely weak h
monic electric field with a chain lengthl of 1 m and a field
strength of E51026 V/m. Numerical analysis was per
formed with the following realistic values of the paramete
r 51026 m, a52.131026 m, t151.631025 s, co5105,
«`58, «s5650, b51, j510233, and m51.6310227kg.
Moreover, the values of«` , «s , andt1 are typical of dis-
perse systems where manifestations of ULF ultrasensiti
were first observed@1–3# according to our interpretation
The values ofr anda are selected on the basis of@1–3#. In
this study, unless otherwise stated, the termpolarization level

FIG. 2. Evolution of polarization-level spectrum under the a
tion of an extremely weak harmonic ULF electric field.
3-6
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means the number of elementary charges involved in po
ization c5Q/e. This number is determined from a con
tinuum version of formula~7!, namely,

Q~x,t !5bH V1~x,t !1B~x,t !V8~x,t !
]w

]x

1B~x,t !V9~x,t !
]2w

]x2 J ~57!

after the spectrumw t(V,t) has been computed.
Let us examine the behavior of the chain under the ac

of a ULF field. It can be seen that the polarization-lev
spectrum has a resonance-excitation portion ift,1 s. Fort
.1 s, this portion gradually changes into that of the disp
sion law Debye characteristic. In the first stage, we obse
main-resonance peaks and satellite resonances fot
.1023 s. With t→1 s, they all shift to the region ofV
,10 Hz. Such frequencies are called ultralow frequenc
ULFs. The dispersion properties of the chain at ULFs
come apparent if theZ axis is transformed to a logarithmi
scale. In the final stage, the characteristic does not follow
Debye law in the strict sense. Instead, we can see a pla
disturbed at certain harmonics and occasionally disrupted
subharmonic bursts. Indeed, the evolution of t
polarization-level spectrum depends on the parameters
lated to the driving, the oscillators, etc. Nevertheless,
pattern retains the distinctive features of Fig. 2 even wh
computed for other values ofl andt1 . Figure 3 shows this
phenomenon in relation to the polarization level as a funct
of V andt1 .

We note that a decrease int1 corresponds to an increas
in the temperature of the chain. It can be seen that the
quencies of both the main and the satellite resonances
virtually fixed whent1 is varied within a wide range:t1
;1025– 1022 s. A slight frequency shift occurs only whe
the chain is cooled in the region oft.1022 s. On the other

FIG. 3. Polarization level vs drive frequency and relaxati
time.
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hand, the region occupied by the satellite resonances ext
to higher frequencies as the temperature is raised.

Remarkably, in the realistic model under considerati
the chain exhibits the dependence of the polarization leve
the chain length. Figure 4 illustrates how this size effe
changes with time forV;31 Hz andE as low as 1028 V/cm.
In particular, the effect indicates that the chain may poss
an ultrasensitivity to ULF. On the other hand, ultrasensitiv
arises only if the chain length exceeds a certain thresh
Specifically, ultrasensitivity is impossible ifl is smaller than
1 cm but is appreciable forl;5 – 10 cm, withr;1026 m and
a;2.131026 m ~Fig. 4!. In the latter case, the polarizatio
level increases by a factor of 109. Furthermore, it was found
that the polarization level of a long chain exposed to
extremely weak field may be as large as that of a short ch
( l ,1023 m) subjected to a strong field~Fig. 5!. However, it
takes a certain time for the response to develop after a
monic field is applied with the delay increasing withh. The
above behavior can be detected in spite of the consider
changes in the pattern when any of the parameters are va

The nonlinear nature of the above effects is demonstra
by Figs. 6~a! and 7. They show the polarization level@Fig.
6~a!# and phase velocity~Fig. 7! as functions of the coordi-
nate and time. Figures 6~a! and 7 clearly shows that soliton
like excitations develop at both ends of the chain, withl
51 m andt.0.2 s. If t,0.1 s when the chain responds res
nantly, then the polarization level oscillates fairly regular
throughout the chain exposed to an external field withV
;31 Hz @Fig. 6~a!#. Afterward, these oscillations becom
more and more chaotic, starting from the chain ends.t
.0.2 s, the chaos gives way to distinct periodic posit
bursts. This obviously suggests that solitonlike stand
waves develop synchronously in the chain. Arising at
ends, they gradually extend to the entire chain. Clearly,
two neighboring dipoles occupied by any of the solitons
cillate in antiphase~since opposite charges of the dipol
prefer a positive-to-negative oscillation pattern!. This grow-
ing oscillation seems to end in the rotation of the dipoles
opposite directions. The chain thus acquires a special typ
dynamics whereby the charges of a dipole move through
the sheath. Specifically, the rate of polarization bursts

FIG. 4. Polarization level vs time and chain length for an e
tremely small drive amplitude.
3-7
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EVGENIY G. FATEEV PHYSICAL REVIEW E 65 021403
lower than the pump frequency by a factor of about 6@Fig.
6~a!#. This is also confirmed by the power spectr in Fig. 6~b!.
For example, if the chain is subjected to an extremely w
harmonic field withV531 Hz, it exhibits polarization burst
at the fundamental frequencyf ;5 Hz and its subharmonic
2 f and 3f . It was found that subharmonics at other freque
cies may also appear and disappear as a result of bifurca
with respect to certain parameters.

V. DISCUSSION

It follows from the above results that a resonance
sponse to a harmonic perturbation at any ULF develops
ing three to five periods. Afterward, the chain is in a chao
state for three to seven periods~depending on parameters!.
Finally, its behavior changes to correspond to the Debye
persion law. By this moment, the chain develops solitonl
wave packets, which are confined to its ends or occupy
entire chain. These features testify to the nonlinearity of
system dynamics, which obeys an SG-like equation. In sim
lating the oscillator coupling, the complicated and eviden
nonlinear fashion in which the polarization level of any o
cillator depends on those of its neighbors was taken
account, as well as the frequencies with which concentra
charges oscillate in them. The interaction between the os
lators was treated in the Coulomb approximation, allow
for the fact that the intercharge spacings vary with tim
Indeed, if the parameters of the basic equations were va
we could find many more trajectories, main and satel
resonances, and chaotic-region widths. Furthermore,
could observe domains in the distributions of the polarizat

FIG. 5. Polarization level vs~a! time and ~b! length for V
;31 Hz. The solid and the dashed lines refer toE51026 and
105 V/m, respectively.
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level and sign throughout the chain. A deeper insight into
phenomena described by the model could be gained from
two-or three-dimensional versions. Also, quite a differe
pattern may be obtained if we allowed for the magnetic fi
of the oscillating dipoles. At higher driving frequencies, t
magnetic field must scatter a fraction of the concentra
charges in the region where solitons are formed. This fac
may reduce the polarization level at medium frequencies

The size effect and ultrasensitivity in the chain are dir
consequences of the strongly nonlinear coupling between
dipoles. Their moments change considerably, primarily d
to the fact thatc1 varies from 0 to aboutc1'co(«s2«`). In
the context of this study, the maximum value ofc1 may be
on the order of 1011.

As indirect experimental evidence for our theoretical
sults, we cite the giant response of strongly compressed c
talline hydrates to an extremely weak electric field in t
frequency range of 20–40 Hz@1–3#. This effect seems to
cause the pronounced loss of mechanical strength~by a fac-
tor of 1.5–2! observed in some cases certain compres
crystal hydrates. Clearly, the ultrasensitivity spectrum o
substance can be determined from the dip in the ULF sp
trum of the threshold of mechanical strength. The beauty
using this approach to design high-sensitivity ULF transd
ers consists in the following. We believe that ultrasensitiv
is possible when crystalline hydrates experience short-t
phase transitions involving partial dehydration produced
considerably nonuniform compression at a high press
~over 5 kbar! or temperature@1–3#. Under such conditions
crystalline hydrates are basically heterogeneous media
can be regarded as one-dimensional seas of nonlinear
tromagnetic oscillators~ideally, the oscillators can be re
garded as grains with double electric layers!. On the one
hand, the short duration of the phase transitions allows on
ascertain the ultrasensitivity spectrum in the initial stage
excitation. On the other hand, we believe that the mo
furnished with realistic parameter values, such as those u
above, can provide an estimate of the average dehydra
time under highly nonuniform compression. The phase tr
sition is sufficiently long for resonance electromagnetic e
citation to develop with threshold parameter values allow
efficient detection of ULF ultrasensitivity from the mechan
cal response~impaired mechanical stability!. If the threshold
conditions of a pronounced response are aroused only by
moment when the state of the excited system entered
dispersion portion of the polarization characteristic, then
persensitivity would occur in the entire ULF region. Sin
the latter was never observed, we can infer that the osc
tion ceased growing as early as the resonance stage.
systems with a narrow resonancelike peak, ULF ultrase
tivity is most likely to occur at 20,V,40 Hz, according to
experiments@1–3#. Figure 2 demonstrates that this frequen
range corresponds to an excitation time of aboutt
;0.1– 0.2 s. Thus, we see that the attempts to attribute
ULF ultrasensitivity of the heterogeneous media~in the
above-mentioned frequency range! to the Debye frequency
dispersion only@1–3# were based on the highly overstate
relaxation times for disperse systems (t;1022– 1021). The
reason is that the early models relying on these values
3-8
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dict that ultrasensitivity peaks will lie fairly close to th
ULFs at which the excitation threshold of the Bridgman
fect decreases. In reality, experiments with certain model
jects yield t;1025 s at normal temperature@3#. Further-
more, the early models seem to be unable to adequa
explain the shift of the ultrasensitivity spectral peak in t
ULF region for crystalline hydrates under strong nonunifo
compression, the effect of which was first reported in@2#. By
contrast, the model suggested in this paper attributes
slight of the peaks to higher frequencies shift as the temp
ture of crystalline hydrates is raised to the fact that the de
is decreased below the threshold of electromagnetic spik
early as in the resonance stage. The numerical ana
showed that the decrease results neither from an increa
the number of elementary charges in the oscillators un
heating nor from changes in the dissipation of oscillat
energy, oscillator diameter, or spacing, etc. We believe th
shorter time of phase transitions in the crystalline hydra
under strong compression and heating leads to a sh
resonance-excitation time, which in turn produces the shif
higher frequencies.

It is worth noting that ultrasensitivity was also theore
cally discovered in an overdamped Kramers oscillator s
jected to a weak time-dependent signals with parame
noise @10#. Furthermore, high sensitivity to weak consta
perturbation and noise was studied in the context of a ch
selective chemical reaction@11#. By contrast, the ultrasens
tivity examined here is induced by a weak alternating sig
and the response level depends on chain length, excita
time, and other parameters. However, the effect does
result from a radical change in the asymptotic behavior
the system~the crossover! in response to a noise-induce
perturbation of a parameter appearing in the model eq
tions. Instead, it is caused by nonlinear effects produc
giant narrow peaks of charge density in the chain. Con
quently, no crossover boundary conditions are required
test our model in experiments.

Finally, let us estimate the local electric fieldEint between
the sheaths of two neighboring oscillators. Existing for
limited period, the field arises when the dipoles intens
oscillate under local focusing during an electromagne
spike. The formulaE5Q2(4p««opr 2qo)21 yields Eint
;107– 1011V/cm, with the dipole chargeQ set to its maxi-
mum value for the stated conditions,Q;10212– 1029 C.
Such charge spikes can cause a microscopic breakdow
numerous sites together with shock waves and explosion
phenomena. This effect is possible in various materials s
jected to relatively weak ULF electric fields@1–3#.

VI. CONCLUSION

We examined the behavior of a chain of closely spa
dipole oscillators (a>2r 1D) with interrelated and variable
dipole moments. To this end, a potential was determined
the dipoles. On the basis of this potential, the Euler-Lagra
equation was solved and a corresponding one-dimensi
nonlinear-motion equation was derived. The latter was t
transformed to a modified SG equation with dissipation.

The numerical analysis of the above equations sugg
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that the chain may feature strongly nonlinear dynamics
was demonstrated that if a SLF harmonic field is applied
the chain, the latter first experiences a resonance typ
excitation, then passes to chaos, and finally enters a s
with the Debye dispersion. During the first stage, the re
nance frequency shifts to still lower frequencies and m
reach a fraction of a hertz. We also found some other in
esting features typical of many systems with nonlinear c

FIG. 6. ~a! Polarization level vs time and the coordinate, and~b!
the corresponding power spectrum after averaging over the ch
The data were obtained for an extremely small drive amplitude
V;31 Hz.

FIG. 7. Phase velocity vs time and the coordinates of the ch
The chain is driven at an extremely small field amplitude andV
531 Hz. The other parameter values are specified in the text.
3-9
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pling, such as the emergence of resonance frequencie
heating in the first stage and the formation of solitonli
objects in the third one.

Remarkably, the computation has revealed the size e
in the chain. This implies that the model may possess ul
sensitivity to extremely weak periodic signals. We belie
that such phenomena were observed in experiments with
perse substances exposed to a ULF electric field@1–3#. Ap-
parently, experimental evidence for the size effect was
ultrasensitivity of crystalline hydrates in an appropriate d
perse phase, with the particle size lying in the millime
range@1–3#. With those media, ultrasensitivity arises if th
amplitude of the perturbing signal is smaller than t
electric-breakdown value by a factor of 1000.

Admittedly, we had to neglect many features of natura
occurring oscillator systems with variable dipole momen
Nevertheless, the paper has demonstrated some effects
were previously observed in physical experiments. We the
fore believe that our approach can be used to predict p
nomena.
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APPENDIX

To numerically solve Eq.~49!, we use an appropriat
finite-difference method~see, e.g.,@12,13#!. Using the mesh
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functionwn,i5w(nh,ik) for w(x,t), we obtain the following
approximate formulas:

w t5~wn,i 112wn,i 21!/2k1O~k2!, ~A1!

w tt5~wn,i 1122wn,i1wn,i 21!/k21O~k2!, ~A2!

wxx5~wn11,i 1122wn,i 111wn21,i 111wn11,i 2122wn,i 21

1wn21,i 21!/2h21O~h21k2!. ~A3!

Inserting Eqs.~A1!–~A3! into Eq. ~49! and neglecting the
O(k2) andO(h2) terms, we arrive at

a1~wn11,i 111wn21,i 111wn11,i 211wn21,i 21!1a2wn,i 21

1a3wn,i 111a4wn,i5Qo
2 sin~wn,i !2g, ~A4!

n51,2,...,N; i 50,1...I ,

where

a15vo
2/2h2, a25~h/2k2vo

2/h211/k2!,

a35~h/2k1vo
2/h211/k2!, a4522/k2. ~A5!

Here, the parametersvo , Qo , h, andg are determined from
Eqs. ~50!–~53!, respectively, withx5nh and t5 ik. The
computational procedure for Eq.~A4! with k5h is robust
only if the steph is less than 0.1@9#. If, e.g., I;1000 and
N;1000 with h;0.001 m and k50.001 s, then l 5Nh
51 m andt5Ik51 s, wherel is the chain length andt is the
observation time.
tt.
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